

J. A. "Drew" Hamilton, Jr., Ph.D. Director, Center for Cyber Innovation Professor, Computer Science & Engineering

CCI Post Office Box 9627 Mississippi State, MS 39762 Voice: (662) 325-2294 Fax: (662) 325-7692 hamilton@cci.msstate.edu

Mississippi State University Center for Cyber Innovation

Cryptography

Reference: Drew Hamilton Lecture Notes Ethical Hacker Exam Guide, 9th ed. Ervin, Kelly and Lee, William

Mississippi State University Center for Cyber Innovation

Cryptography in Action

- Public key infrastructure
- Digital certificates
- Authentication
- E-commerce
- RSA
- MD-5
- SHA
- SSL
- PGP
- SSH

Key Terms

- Plain Text/Clear Text
 - Original message unencrypted
- Cipher Text
 - Message that has been transformed by a cipher algorithm
- Algorithms
 - Formula and discrete steps describing the encryption and decryption process
 - i.e. Diffie Helman
- Keys
 - Discrete piece of info, random in nature, determines the result of output given a cryptographic operation, used to open or unlock an encrypted message

Symmetric Cryptography

- DES
- Triple DES
- Blowfish
- IDEA
- RC2
- RC3
- RC4
- RC5
- RC6
- AES (Rijndael)
- Twofish

Asymmetric (Public Key) Cryptography

- How does it work?
 - Alice sends a message to Bob after encrypting it with Bob's public key
 - Bob uses his private key to decrypt her message
 - Hash function creates a digital signature to authenticate the message
- Authenticating the Certificate
 - Binding a keypair with a user
- Enter the PKI System
- Building a PKI Structure

Hashing

- MD2
- MD4
- MD5
- MD6
- HAVAL
- RIPE-MD
- SHA-0
- SHA-1
- SHA-2

Attacks – Issues with Cryptography

- Cipher-Text-Only Attack
- Known Plaintext Attack
- Chosen Plaintext Attack
- Chosen Cipher-Text Attack

IPsec

- Set of protocols designed to protect the confidentiality and integrity of data as it flows over a network
- Network layer of OSI model
- Authentication Header
 - Provides services to authenticate data and the sender
- Encapsulating Security Payload
 - Authenticates information and encrypts data

Pretty Good Privacy

- Uses public key encryption
- Email travels to recipient in encrypted form
- Recipient uses PGP to decrypt into plain text
- Can use their private key as a signature
- Can encrypt files using your public key and use your private key to decrypt them

Secure Sockets Layer

- Server presents client with a digital certificate
- Client makes sure the domain name matches
- Once handshake is complete, the client will automatically encrypt all information, which is unreadable in route
- A secret key decrypts the message when it arrives

Summary

- Know the purpose of cryptography
 - Protect the integrity and confidentiality of data
- Understand symmetric vs. asymmetric cryptography
 - Know which is suitable for which situation
- Know your tools and terms

