

CySA+ Cybersecurity Analyst

CCI Post Office Box 9627 Mississippi State, MS 39762

Part 3 Cyber Incident Response

Selecting the Best Course of Action

Chapter 10

Outline

- Network-Related Symptoms
- Host-Related Symptoms
- Application-Related Symptoms
- Quiz

- Network Sensors
 - Usually will provide the first indicators that something is wrong
- Bandwidth Utilization
 - Bandwidth
 - The rate data can be transferred through a medium
 - Usually measured in bits per second
 - Normal Bandwidth Utilization
 - An organization's network will usually have a pattern of utilization with normal ebbs and flows
 - An advisory can hide data exfiltration if they are patient
 - Very difficult to detect by looking at the network traffic

Bandwidth Utilization

Abnormal Bandwidth Utilization

- Most often, an attacker will want to quickly exfiltrate data, and this can be seen by looking at network traffic
- Another indicator can be seen by looking at endpoints and directionality of the connection
- Below figure 10-1 shows a suspicious pattern of NetFlow activity. Though one host (10.0.0.6) is clearly consuming more bandwidth than the others, this fact alone can have a multitude of benign explanations.

Src IP	Src Port	Dst IP	Dst Port	Protocol	Packets	Bytes/Pkt
10.0.3	54902	192.168.0.7	80	TCP	2491	740
10.0.0.6	55097	172.31.21.3	443	TCP	100227	1528
10.0.0.12	993	10.0.0.3	48450	TCP	2210	762
10.0.0.6	443	10.0.0.7	54122	TCP	2271	1040
10.0.0.6	443	10.0.0.3	53112	TCP	1022	810

Figure 10-1 NetFlow report showing suspicious bandwidth use

- Beacons
 - Beaconing
 - A periodical outbound connection between a compromised computer and an external controller
 - Some legitimate connections can look like beacons
 - E.g. High-end software will periodically check licensing of the software
 - Detecting beacons with endpoint analysis
 - Analyze how regularly the host communicate with other hosts
 - First, sort traffic logs by internal source address
 - Second, sort traffic logs by the destination address
 - Third soft traffic logs by time
 - Typical beacons will be apparent using this method

- Irregular Peer-to-Peer Communication
 - Normal Peer-to-Peer Communication
 - Usually, there is a small number of servers that provide services to several non-server computers
 - It is rare to find two peer workstations talking to one another and is an indication of a compromised host
 - Abnormal Peer-to-Peer Communication
 - Unprivileged accounts connecting to other hosts
 - Privileged accounts connecting from regular hosts
 - Repeated failed remote logins
 - Lateral movement
 - The process of an attacker compromising additional hosts within a network
 - Can be done by utilizing trusted tools such as
 - SMB and PsExec in Windows or SSH in Linux
 - All that is need to use these tools is a username and password

Mississippi State University Center for Cyber Innovation

Interactive Exercise 1

Name 5 network-related symptoms of attack?

How to determine the Beacon behavior?	
What are the three steps of endpoint analysis?	

Interactive Exer	cise 1 Answers
Name 5 network-related symptoms of attack?	 Bandwidth Utilization, Beaconing, Irregular P2P communication, Rogue devices on the network Scan sweeps
How to determine the Beacon behavior?	Can be determined using endpoint analysis
What are the three steps of endpoint analysis?	 sort traffic logs by internal source address sort traffic logs by the destination address soft traffic logs by time

- Rogue Devices on the Network
 - Rogue devices
 - Are unauthorized devices on the network
 - Network Access Control (NAC)
 - Ensures that each device try to connect to the network is
 - Authenticated, scanned, and connected to the appropriate network
 - Provides fine-grain controls to implement policies
 - Provides centralized logs that can be used to detect rogue devices attempting to connect

Mississippi State University Center for Cyber Innovation

[1,3]

- Rogue Devices on the Network
 - Access Points (APs)
 - If your environment does not have NAC, then
 - Send all AP logs to a central store
 - Physically look for MAC addresses you have not seen before
 - Issues with this method
 - Can be tedious
 - It is easy for an attacker to change their MAC address to a legitimate user

Interactive Exercise 2

Why is P2P communication suspicious?

What does the term "lateral movement" mean?	
Name 2 ways we can detect rogue devices connected to our network?	

Interactive Exercise 2 Answers

Why is P2P communication suspicious?	It 's rare in a corporate network for two peer workstations to be communicating with each other.
What does the term "lateral movement" mean?	the process by which attackers compromise additional hosts within a network after having established a foothold in one.
Name 2 ways we can detect rogue devices connected to our network?	 deploy NAC to ensure each device is authenticated, potentially scanned, and then joined to the appropriate network all logs from your APs sent to a central store in which you can look for physical MAC addresses

• Scan Sweeps

- Non-stealthy attackers
 - Will use a tool like Nmap to scan sweep and map out an environment after compromising a host
 - The compromised host is easy to pick out given that it is generating a lot of connection attempts to a mass of endpoints
- Address Resolution Protocol (ARP)
 - Is used by interfaces to determine the address of the next hop toward the final destination of a packet
 - ARP Request
 - A node that asks all other nodes on the LAN who handles this IP address
- Ensure your organization has a sensor in every subnet, monitoring ARP messages

Scan Sweeps

- A Scan Sweep Attempt
 - Will generate a lot of ARP queries
 - Unless authorized by a security staff member, any attempts should be investigated
 - Below figure 10-2 example, shows most of the request will go unanswered because there are only a handful of host on the network segment though the subnet mask is for 255 addresses signaling a scan sweep.

Time Source	Destination	Protocol L	ength Info
1.88019000 VIIWare_4a:08:30	BLOGOC92 F	AKP	42 WHO HAS 192.108.192.102? 1011 192.108.192.0
1.88528900 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.163? Tell 192.168.192.6
1.88540000 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.164? Tell 192.168.192.6
1.88555900 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.165? Tell 192.168.192.6
1.88566200 Vmware_4a:58:30	Broadcast	ARP	42 Who has 192.168.192.166? Tell 192.168.192.6
1.88574400 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.167? Tell 192.168.192.6
1.88583400 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.168? Tell 192.168.192.6
1.88591000 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.169? Tell 192.168.192.6
1.88601800 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.170? Tell 192.168.192.6
1.88610000 Vmware_4a:58:30	Broadcast	ARP	42 Who has 192.168.192.171? Tell 192.168.192.6
1.88618800 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.172? Tell 192.168.192.6
1.88626800 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.173? Tell 192.168.192.6
1.88643300 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.174? Tell 192.168.192.6
1.88654100 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.175? Tell 192.168.192.6
1.88663100 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.176? Tell 192.168.192.6
1.88671500 Vmware_4a:58:30	Broadcast	ARP	42 who has 192.168.192.177? Tell 192.168.192.6

Figure 10-2 ARP queries associated with a scan sweep

Running Processes

- "Malware can hide, but it has to run."
 - Meaning when responding to an incident, first look at running processes
 - Tools are readily available on all major OSs to view running processes
 - Do not rely on these tools; too much more sophisticated malware will be able to conceal itself
 - By capturing volatile memory and performing memory forensic analysis, a trained eye should be able to find any attempts at malware concealment

Normal running processes

- Normal Windows processes
 - E.g., svchost.exe and lsass.exe
- Normal Linux processes
 - E.g., kthreadd and watchdog
- Knowing what is normal
 - This is key to finding malware in running processes
 - Having a baseline and notes on what is normal will help weed out the known normal processes
 - Advisories will often name their processes similarly to benign processes
 - » E.g., svchost.exe will end in an "s"
 - » E.g., Isass.exe will start with a "1"

Mississippi State University Center for Cyber Innovation

- Running Processes
 - Abnormal Running Processes
 - Nefarious processes will utilize resources such as
 - Network sockets, CPU cycles, and memory
 - Netstat command will make it easy to see which sockets belong to which processes
 - Windows Example
 - » netstat -ano
 - Mac OS
 - » netstat -v
 - Linux
 - » netstat -nap

C4.		Command Prompt		 х
C:\Users'	\Kent>netstat			^
Active Co	onnections			
Proto TCP TCP TCP TCP TCP TCP TCP TCP TCP TCP	Local Address 127.0.0.1::354 127.0.0.1::38872 127.0.0.1:27015 127.0.0.1:27015 127.0.0.1:38888 127.0.0.1:49155 127.0.0.1:49261 127.0.0.1:49262 127.0.0.1:49613 127.0.0.1:49613 127.0.0.1:50063 192.168.1.78:49172 192.168.1.78:49190 192.168.1.78:49192 192.168.1.78:49254 192.168.1.78:49254 192.168.1.78:49265 192.168.1.78:49265 192.168.1.78:49265 192.168.1.78:49265 192.168.1.78:49265	Foreign Address Win8-T420:49155 Win8-T420:50063 Win8-T420:55261 Win8-T420:55287 Win8-T420:55287 Win8-T420:55287 Win8-T420:49262 Win8-T420:49261 Win8-T420:19872 200-193-93-154:8195 187-122-154-116:29837 179-165-96-209:29837 bn1wns1011702:https bn1wns1011702:https .:http ec2-54-225-220-171:htt UIP15:https ec2-54-225-220-171:htt	State ESTABLISHED ESTABLISHED ESTABLISHED TIME_WAIT TIME_WAIT ESTABLISHED ESTABLISHED ESTABLISHED ESTABLISHED ESTABLISHED ESTABLISHED ESTABLISHED ESTABLISHED CLOSE_WAIT PS CLOSE_WAIT CLOSE_WAIT	

Mississippi State University Center for Cyber Innovation

[1,4]

Interactive Exercise 3

What type of traffic/messages should you be on the lookout for if you want to detect unauthorized scan sweeps?

You see scvhosts.exe running on your windows system. Is this normal?

What would this netstat command be for a Windows, Mac OS, and Linux system?

Interactive Exercise 3 Answers

What type of traffic/messages should you be on the lookout for if you want to detect unauthorized scan sweeps? When an attacker attempts a scan sweep of a network, the scanner will generate a large number of ARP queries

You see scvhosts.exe running on your windows system. Is this normal?	An attacker as added an extra "s" to fool you.
What would this netstat command be for a Windows, Mac OS, and Linux system?	 Windows = netstat -b or netstat -ano Mac OS = netstat -v Linux = netstat -nap

- Running Processes
 - Abnormal Running Processes
 - A busy malicious process will use a large number of CPU cycles
 - In Windows, use Task Manager to view CPU usage and running processes
 - In Linux, use "top" or "ps" utilities

- Memory Contents
 - Collecting volatile memory
 - FTK
 - Captures memory and file systems from Windows machines
 - Hal Pomeranz's Linux Memory Grabber
 - Captures memory from Linux Machines
 - Ensure to dump the memory to a clean external hard drive from your jump bag
 - Volatile memory analysis
 - Is a sure way to find any malware, even rootkits
 - The problem with this method is that it takes time to capture a full memory image and even longer to analyze
 - Advisory will use tools that only reside in memory
 - Incident responders will have to rely on memory forensics to detect and understand them
 - Volatility
 - Is a tool used to analyze captured memory images

Mississippi State University Center for Cyber Innovation

Interactive Exercise 4

What are the two tools used to dump the contents of memory to disk mentioned earlier?

What is the major problem when using volatile memory analysis method?	
A trained eye should be able to find any attempts at malware concealment after completing what two steps?	

Interactive Exercise 4 Answers

What are the two tools used to 1. FTK Imager (Windows dump the contents of memory systems)to disk mentioned earlier?2. Hal Pomeranza's (Linux OS)

What is the major problem when	it takes time to capture a full
using volatile memory analysis	memory image and even longer
method?	to analyze
A trained eye should be able to find any attempts at malware concealment after completing what two steps?	 capturing volatile memory performing memory forensic analysis

- File System
 - Is the set of processes and data structures that the OS uses to manage persistent storage devices
 - Artifacts
 - Generally means digital object of interests to a forensic investigation
 - Usually, in incident response, the file system is the focal point due to typically holding relevant artifacts
 - It is very difficult for advisories to not leave evidence of their actions on the file system

Unauthorized Software

- Bypassing antimalware systems
 - Signature detection systems
 - Are often deceived by adversaries obscuring the code
 - Behavioral detection systems
 - Are often deceived by the adversaries change what the code does
- Software Whitelisting
 - Process that ensures only known-good software can execute on a system
 - Very effective at reducing attack surfaces
 - Very unpopular by the user, given any new application must be first reviewed and approved by IT
- Software Blacklisting
 - Process that ensures known-bad software is not executed on a system
 - Much more common
- Best Practice
 - If whitelisting is not possible, at least have an inventory of all software that is installed on each system

Mississippi State University Center for Cyber Innovation

- Unauthorized Changes
 - Example Unauthorized Changes
 - Advisories will try to maintain access to compromised machines by replacing system libraries with malicious ones
 - The stand-in libraries will act as the original but also run malicious code
 - Preventing Unauthorized Changes
 - Object Access Auditing
 - Windows built-in feature
 - Automatically logs any access or changes to files in the audit space
 - Should be selective of which files should be audited to not generate too many alerts
 - Hash the files
 - Store the hash value of a file in a secure place and periodically compare the hash to ensure the file has not changed
 - Can be easily automated
 - There are commercial options available such as Tripwire

Mississippi State University Center for Cyber Innovation

Data Exfiltration

- Detecting Exfiltration
 - Will usually be easy to detect if the advisory is exfiltrating a large amount of data
 - These attempts will try to mimic an acceptable transfer such as a web or email connection
 - Might look like a genuine connection, but the volume of data taken and the endpoint will not
 - Set automated alarms that trigger on large data transfers with unusual destinations
- Data Loss Prevention (DLP)
 - Rely on tamper-resistant labels on files
 - Tracks those files as they move in and out of the network
 - Requires data inventories, data classification system, and technical controls

Interactive Exercise 5

How can you detect data exfiltration?

What 2 antimalware systems are commonly bypassed by unauthorized software?

What is a file system?

Interactive Exer	rcise 5 Answers
How can you detect data exfiltration?	User has noticed connection will look legitimate, but its volume and endpoint will not. The pattern will also be broken.
What 2 antimalware systems are commonly bypassed by unauthorized software?	 Signature detection systems Behavioral detection systems
What is a file system?	Is a set of processes and data structures that the OS uses to manage persistent storage devices

Capacity Consumption

- Most attacks will create spikes in either memory, CPU cycles, disk space, or network bandwidth
- In the CySA+ exam, you will be tested on identifying anomalies in a scenario
- In the figure to the right is a Windows 7 Resource Monitor
 - On the exam, you will have an image like this one and be asked questions on the resource usage

Dverview CPU Memory D	Disk	Network								
CPU 📕	6% CP	U Usage		100	1% Maximun	n Frequenc	/	1 3	Viev	vs
image	PID	Description	Status	TI	reads	CPU	Average C	 CPU 		100
perfmon.exe	3088	Resource	Running		19	D	3.95		الل کری کر کر ا	-
explorer.exe	1336	Windows	Running		25	5	1.50			
System Interrupts	-	Deferred	Running		102	2	1.20			
csrss.exe	432	Client Ser	Running		10	D	0.18		او کے دوروں وال	<u>ک ک</u>
System	4	NT Kernel	Running		92	D	0.14		Ma	
dwm.exe	1320	Desktop	Running		5	D	0.10	An	1	a. J
vmtoolsd.exe	1588	VMware T	Running		7	0	80.0	* 60 Sec	conds	0
Disk	0 KB/s	ec Disk I/O		196	Highest Ad	tive Time	~	Disk	100	KB/se
mage	PED	File	Read B	Write (Total (B	L/O Prio	Respon	-		
ivstem	4	C\SMft	0	191	191	Normal	1			
system	4	C:\Win	309	0	309	Normal	1			
System	4	C:\Svste	0	862	862	Normal	0			
system	4	C:\SLog	273	1 229	1.502	Normal	0			0.4
wchost.exe (LocalServiceNetwo	768	C:\Win	0	12	12	Normal	0			0.10
lystem	4	C:\\$Ext	0	179	179	Normal	0	-	ork.	O KB
Network	0 Kbp	s Network I/O		096	Network UI	tilization	~			
mage	PID	Address	Ser	nd (B/sec)	Receive (E	l/sed	Total (B/sec)			
wchost.exe (LocalServiceAndNo	3204	239.255.255	2	D		14	14		6.	
wchost.exe (NetworkService)	1160	192.168.192	7	10		0	10	Ast	AN .	
jystem .	4	239.255.255.3	2	з		0	3			
wchost.exe (NetworkService)	1160	224.0.0.252		2		0	2	Memo	ory 100 Hard Fau	ults/se
wchost.exe (NetworkService)	1160	ff02:1:3		٥		2	2		بر میں مرکار اور کی کا میں اور کا اور کی کا اور کا	
	0 Harr	t Faults/sec		= 319	& Used Phys	iral Memor				

Mississippi State University Center for Cyber Innovation

- Unauthorized Privileges
 - Privilege escalation
 - Elevating limited access account to acquire unauthorized privileges
 - Methods of gaining unauthorized privileges
 - Acquiring privileged credentials
 - Exploiting software flaws
 - Exploiting misconfigurations
 - Response to detected unauthorized privileges
 - Disable the suspected account globally and isolate the host
 - Depending on the situation, this is the simplest approach
 - This is risky and could cause harm
 - » E.g. This could be a legitimate action taken by a teammate performing a vital function
 - Monitor the activates on the account to determine if malicious or benign
 - This approach reduces false positives
 - There is a risk of allowing the attacker to continue potentially harmful actions
 - Your response depends greatly on the situation

Interactive Exercise 6

What are 5 host-related symptoms indicative of an infected system?

Name 3 ways in which a privilege escalation can occur.	
you want to check its memory, CPU cycles, disk What tool would be used to check a computer's memory, CPU cycles, disk space and network bandwidth?	

Interactive Exercise 6 Answers		
What are 5 host-related symptoms indicative of an infected system?	 Running processes Memory contents/Memory dumps File system changes Capacity consumption Unauthorized privileges 	
Name 3 ways in which a privilege escalation can occur.	 Acquiring privileged credentials Exploiting software flaws Exploiting misconfigurations 	
you want to check its memory, CPU cycles, disk What tool would be used to check a computer's memory, CPU cycles, disk space and network bandwidth?	The correct tool to utilize would be the resource monitor.	

- Application-Related Symptoms
 - "Application" in this section refers to user-level rather than system-level features and services
 - This section will review applications like Microsoft Office, or Google Chrome rather than web or email services
- Anomalous Activity
 - This is when an application displays unusual behavior
 - E.g., In a web browser, frozen pages, rapidly changing URLs in the address bar are both indicators of an exploited application
 - Challenge with detecting this type of activity
 - Anomalous behavior tends to mimic normal software flaws
 - Best practice
 - It is best to take cation and quickly isolate the host
 - See if the application tries to make any outbound connection attempts

Mississippi State University Center for Cyber Innovation

- Introduction of New Accounts
 - Attackers will sometimes try to create a new account for two purposes
 - To install and run tools to maintain persistence on the host
 - To have an alternate more normal persistence in a domain account
 - If you detect an unexpected new account
 - Reset the password on the account and log off the user
 - Monitor the account for attempted logins to find the source of the attempt

- Unexpected Output
 - Sign of compromised applications
 - Unexpected output like various types of pop-up messages
 - User Access Control (UAC) pop-ups
 - The pop-up in the figure to the right is almost always malicious if the user is not trying to install any new software
 - Navigation confirmation or Certification pop-ups
 - Users tend to not read these
 pup-ups and select okay

Mississippi State University Center for Cyber Innovation

Interactive Exercise 7

What is a common technique that attackers use to establish persistence in a network?

What were the 2 kinds of popups mentioned in the slides that you should look for?

Name 2 signs of anomalous behavior for a Web browser.

Interactive Exercise 7 Answers

What is a common technique Adding a new user account that attackers use to establish persistence in a network?

What were the 2 kinds of pop-	 Unexpected User Access
ups mentioned in the slides	Control (UAC) Certificate warnings and
that you should look for?	navigation confirmation dialogs
Name 2 signs of anomalous behavior for a Web browser.	 Frozen pages Rapidly changing URLs in the address bar

- Unexpected Outbound Communication
 - This is the number one indicator of a compromised application
 - It is rare for a compromise not to involve an outbound connection
 - Detecting this is difficult
 - A network sensors cannot easily tell if the outbound connection
 on port 443 was initiated by Google Chrome or by Notepad
 - We will need a host-based sensor or IDS to detect this kind of behavior
 - The connection could be valid and just mean that the application software is updating
 - Best response when detected
 - Automatically block the connection attempt if the application has not been whitelisted

Service Interruption

- Should investigate services that display unusual behavior such as
 - Starting, stopping, restarting, or crashing
 - E.g., An antimalware icon in the status bar disappears could mean that an attacker disabled its protection
 - Look at the resource manager and log files to determine if the symptoms are malicious activities

Memory Overflows

- Memory is a complex environment malware activity tends to disrupt this environment
 - If an atter is off by even a byte when writing to memory, this will cause an error notification to display to the user
 - Messages sometimes me the attack has failed
- Best practice
 - If you get a memory error message, it is best to analyze a memory dump to find the problem

Interactive Exercise Final

You notice that some of your services are crashing. What does this mean?

communication a sign of compromise?	
Name 6 application-related symptoms of a compromised applications	

Interactive Exercise Final Ans

You notice that some of your services are crashing. What does this mean?	User may be facing malicious activity. An examination of the resource manager and log files will help you determine issue.
Why is unexpected outbound communication a sign of compromise?	normally it's not possible for a network sensor to tell that an outbound connection was initiated by Internet Explorer or by Notepad
Name 6 application-related symptoms of a compromised applications	 Anomalous activity, Introduction of new accounts, Unexpected outputs, Unexpected outbound communication, Service interruption, and Memory Overflows

Chapter 10

Question #1

- 1. the practice of permitting only known-benign software to run is referred to as what?
 - A. Blacklisting
 - **B.** Whitelisting
 - C. Blackhatting
 - **D. Vulnerability scanning**

Answer #1

- B
 - Whitelisting is the process of ensuring that only knowngood software can execute on a system
 - Rather than preventing known-bad software from running, this technique only allows approved software to run in the first place

Question #2

- 2. Which of the following is not considered part of the lateral movement process?
 - A. Internal reconnaissance
 - **B.** Privilege escalation
 - C. Exfiltration
 - **D.** Pivoting attacks

Answer #2

- C
 - Lateral movement is the process by which attackers compromise additional hosts within a network after having established a foothold in one
 - Often achieved by leveraging the trust between hosts to conduct internal reconnaissance, privilege escalation, and pivoting attacks

Question #3

- 3. What is a common technique that attackers use to establish persistence in a network?
 - A. Buffer overflow
 - **B.** Adding new user accounts
 - C. Deleting all administrator accounts
 - D. Registry editing

Answer #3

- B
 - A clever way that attackers use for permanence is to add administrative accounts or groups and then work from those new accounts to conduct additional attacks

Question #4

- 4. Which one of the following storage devices is considered to be the most volatile?
 - A. Random-access memory
 - **B.** Read-only memory
 - C. Cloud storage
 - D. Solid-state drive

Answer #4

- A
 - Random-access memory (RAM) is the most volatile type of storage listed
 - RAM requires power to keep its date, and one power is removed, it loses its content very quickly

Question #5

- 5. Which of the following is not an area to investigate when looking for indicators of threat activity?
 - A. Network speed
 - B. Memory usage
 - C. CPU cycles
 - D. Disk space

Answer #5

- A
 - Spikes in memory CPU, disk, or network usage (not necessarily network speed) might be indicative of threat activity
 - It's important to understand what the normal levels of usage are to more easily identify abnormal activity

Question #6

- 6. What is a useful method to curb the use of rogue devices on a network?
 - A. SSID
 - **B.** FLAC
 - C. WPA
 - D. NAC

Answer #6

- D
 - Network Access Control (NAC) is a method to ensure that each device is authenticated, scanned, and joined to the right network
 - NAC solutions often give fine-grained controls for policy enforcement

Scenario for Questions 7-10

You receive a call from the head of the R&D division ۲ because one of her engineers recently discovered images and promotional information of a product that looks remarkably like on that your company has been working on for months. When reading more about the device, it becomes clear to the R&D head that this is in fact the same product that was supposed to have been kept under wraps. She suspects that the plans have been stolen. When inspecting the traffic from the R&D workstations, you notice a few patterns in the outbound traffic. The machines all regularly contact a domain registered to a design software company, exchanging a few byte of information at a time. However, all of the R&D machines regularly communicate to a print server on the same LAN belonging to Logistics, sending several hundred megabytes in regular intervals

Question #7

- 7. What is the most likely explanation for the outbound communications from all the R&D workstations to the design company?
 - A. Command-and-control instructions
 - **B.** Exfiltration of large design files
 - C. License verification
 - D. Streaming video

Answer #7

- C
 - Some types of software, particularly those for high-end design, will periodically check licensing using network connection

Question #8

- 8. What device does it make sense to check next to discover the source of the leak?
 - A. The DNS server
 - **B.** The printer belonging to Logistics
 - C. The mail server
 - D. The local backup of the R&D systems

Answer #8

• B

- A common approach to removing data from the network without being detected is to first consolidate it in a staging location within the target network
- Noting the size of the transfers to the print server, it makes sense to check to see if it is serving as a staging location and communicating out of the network

Question #9

- 9. Why is this device an idea choice as a source of the leak?
 - A. This device might not arouse suspicion due to its normal purpose on the network
 - B. The device has regular communications outside of the corporate network
 - C. This device can emulate many systems easily
 - D. This device normally has massive amounts of storage

Answer #9

- A
 - This device is a good choice because an administrator would not normally think to check it
 - However, because a print server normally has no reason to reach outside of the network, it should alert you to investigate further

Question #10

- 10. What is the term for the periodic communications observed by the R&D workstations?
 - A. Fingerprinting
 - **B.** Chatter
 - C. Footprinting
 - D. Beaconing

Answer #10

- D
 - Beaconing is a periodical outbound connection between a compromised computer and an external controller
 - This beaconing behavior can be detected by its two common characteristics: periodicity and destination
 - Beaconing is not always malicious, but it warrants further exploration

References

- 1. Maymí Fernando, and Brent Chapman. CompTIA CSA+ Cybersecurity Analyst Certification All-in-One Exam Guide (Exam CS0-001). McGraw-Hill Education, 2018.
- 2. friedaj friedaj, "CySA+ Chapter 10: Selecting the Best Course of Action," quizlet, 15-Jul-2018. [Online]. Available: https://quizlet.com/296891201/cysa-chapter-10-selecting-thebest-course-of-action-flash-cards/. [Accessed: 22-Dec-2020].
- 3. N. Sharma and N. 26, "Network Access Control (NAC)," Help Net Security, 26-Nov-2007. [Online]. Available: https://www.helpnetsecurity.com/2007/11/26/network-accesscontrol-nac/. [Accessed: 08-Jan-2021].
- 4. K. Chen, "Troubleshooting Network Connections with Command Line Netstat," Next of Windows, 05-Aug-2014. [Online]. Available: https://www.nextofwindows.com/netstat. [Accessed: 08-Jan-2021].

